内容目录
合集请看:pyTorch入门合集
参考视频:https://www.bilibili.com/video/BV1hE411t7RN/?spm_id_from=333.337.search-card.all.click
核心代码
class Module(nn.Module):
def __init__(self):
super().__init__()
self.linear1 = Linear(196608, 10)
def forward(self, input):
output = self.linear1(input)
return output
完整代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# 获取数据集,这里dataloader没搞懂,暂且放着吧qwq
dataset = torchvision.datasets.CIFAR10("../data",train=False, transform=torchvision.transforms.ToTensor(),
download=True)
dataloader = DataLoader(dataset, batch_size=64)
class Module(nn.Module):
def __init__(self):
super().__init__()
self.linear1 = Linear(196608, 10)
def forward(self, input):
output = self.linear1(input)
return output
module = Module()
for data in dataloader:
imgs, targets = data
# 将imgs数组摊平,类似于output = torch.reshape(imgs,(1,1,1,-1))
output = torch.flatten(imgs)
output = module(output)
print(output.shape)