内容目录
简单记录了neuroexplorer软件中自带的一些算法
| Type | name | description | remark |
|---|---|---|---|
| Spike Train Structure | Rate Histograms | 1、对于spike trains,计算其每个bin中event数量 2、对于连续信号,计算每个bin的平均值 |
|
| Firing Rates | 指定时间段,并计算该时间段内的发射速率(事件数/时间(s)),与Rate Histograms类似 | ||
| Autocorrelograms | 计算给定数据的Autocorrelograms(即每个event前后一定范围内的spike数量统计) | ||
| Autocorrelograms Versus Time | 将数据按时间分段,单独计算每段的Autocorrelograms后绘图(x轴为时间,y轴为对应时间段的Autocorrelograms) | 代码已复现 | |
| Interspike Interval Histogramss | 计算在长度在[$t_0,t_0+t$]范围内的ISI的数量。并提到了用log bins去计算 | ||
| Burst Analysis | 分析spike trains 中的burst | NeuroExplorer引用的论文中提到了用Posion surprise去寻找burst。 | |
| Joint ISI | 计算Joint ISI Distribution | ||
| Poincare Maps | 对于每个发生在t[i]的spike,在((t[i] - t[i-1], t[i-1] - t[i-2]))上绘制点 | ||
| Hazard Analysis | |||
| CV2 Analysis | 计算spike trains的coefficient of variation(变异系数) | 用$CV_2$来计算,提高了特定情况下变异系数的准确性 代码已复现 |
|
| Power Spectral Densities | |||
| Spectrogram Analysis | |||
| Spike Train Visualizations | Rasters | 绘制spike与时间的光栅图 | |
| Cumulative Activity Graphs | 绘制spike数量的累积图像(x轴为时间,y轴为累积spike数量) | ||
| Instant Frequency | 计算瞬时频率,即(1/(t[i] - t[i-1])),其中t[i]是第i个spike的时间点 | ||
| Interspike Intervals vs. Time | 对于,第i个spike,其时间为t[i],绘制(t[i],t[i] - t[i-1])点 | ||
| Dependencies between Channels | Crosscorrelograms | 与Autocorrelograms类似,event时间由自身对应时间变为另一个spike trains的对应时间。并提供了多种标准化方法 | |
| Perievent Histograms | 与Crosscorrelograms一样 | ||
| PSTH Versus Time | 用滑动窗口计算多个PSTH | ||
| Trial Bin Counts | |||
| Perievent Rasters | 一个list相对于另一个list的对比格栅图 | ||
| Perievent Firing Rates | |||
| Joint PSTH | 计算Joint PSTH | 代码已复现 | |
| Epoch Counts | |||
| Correlations With Continuous Variable | |||
| Coherence Analysis | |||
| Perievent Spectrograms | |||
| Regularity Analysis | |||
| Synchrony vs. Time | |||
| Analysis of Head Direction Cells | |||
| Firing Phase | |||
| Place Cell Analysis | |||
| Principal Component Analysis | |||
| Reverse Correlation | |||
| Analyses of Continuous Data | Band Energy versus Time | ||
| Coherence Analysis for Continuous Variables | |||
| Find Oscillations | |||
| Find Ripples | |||
| Perievent Rasters for Continuous | |||
| Phase Analysis via Hibert Transform | |||
| Power Spectral Densities for Continuous Variables | |||
| Single Trial Spectrum Analysis | |||
| Analyses of Waveforms | Sort Spikes | ||
| Waveform Comparison | |||
| Custom Analysis | Python-based Analysis |