内容目录
简单记录了neuroexplorer软件中自带的一些算法
Type | name | description | remark |
---|---|---|---|
Spike Train Structure | Rate Histograms | 1、对于spike trains,计算其每个bin中event数量 2、对于连续信号,计算每个bin的平均值 |
|
Firing Rates | 指定时间段,并计算该时间段内的发射速率(事件数/时间(s)),与Rate Histograms类似 | ||
Autocorrelograms | 计算给定数据的Autocorrelograms(即每个event前后一定范围内的spike数量统计) | ||
Autocorrelograms Versus Time | 将数据按时间分段,单独计算每段的Autocorrelograms后绘图(x轴为时间,y轴为对应时间段的Autocorrelograms) | 代码已复现 | |
Interspike Interval Histogramss | 计算在长度在[$t_0,t_0+t$]范围内的ISI的数量。并提到了用log bins去计算 | ||
Burst Analysis | 分析spike trains 中的burst | NeuroExplorer引用的论文中提到了用Posion surprise去寻找burst。 | |
Joint ISI | 计算Joint ISI Distribution | ||
Poincare Maps | 对于每个发生在t[i]的spike,在((t[i] - t[i-1], t[i-1] - t[i-2]))上绘制点 | ||
Hazard Analysis | |||
CV2 Analysis | 计算spike trains的coefficient of variation(变异系数) | 用$CV_2$来计算,提高了特定情况下变异系数的准确性 代码已复现 |
|
Power Spectral Densities | |||
Spectrogram Analysis | |||
Spike Train Visualizations | Rasters | 绘制spike与时间的光栅图 | |
Cumulative Activity Graphs | 绘制spike数量的累积图像(x轴为时间,y轴为累积spike数量) | ||
Instant Frequency | 计算瞬时频率,即(1/(t[i] - t[i-1])),其中t[i]是第i个spike的时间点 | ||
Interspike Intervals vs. Time | 对于,第i个spike,其时间为t[i],绘制(t[i],t[i] - t[i-1])点 | ||
Dependencies between Channels | Crosscorrelograms | 与Autocorrelograms类似,event时间由自身对应时间变为另一个spike trains的对应时间。并提供了多种标准化方法 | |
Perievent Histograms | 与Crosscorrelograms一样 | ||
PSTH Versus Time | 用滑动窗口计算多个PSTH | ||
Trial Bin Counts | |||
Perievent Rasters | 一个list相对于另一个list的对比格栅图 | ||
Perievent Firing Rates | |||
Joint PSTH | 计算Joint PSTH | 代码已复现 | |
Epoch Counts | |||
Correlations With Continuous Variable | |||
Coherence Analysis | |||
Perievent Spectrograms | |||
Regularity Analysis | |||
Synchrony vs. Time | |||
Analysis of Head Direction Cells | |||
Firing Phase | |||
Place Cell Analysis | |||
Principal Component Analysis | |||
Reverse Correlation | |||
Analyses of Continuous Data | Band Energy versus Time | ||
Coherence Analysis for Continuous Variables | |||
Find Oscillations | |||
Find Ripples | |||
Perievent Rasters for Continuous | |||
Phase Analysis via Hibert Transform | |||
Power Spectral Densities for Continuous Variables | |||
Single Trial Spectrum Analysis | |||
Analyses of Waveforms | Sort Spikes | ||
Waveform Comparison | |||
Custom Analysis | Python-based Analysis |