内容目录
合集请看:pyTorch入门合集
参考视频:https://www.bilibili.com/video/BV1hE411t7RN/?spm_id_from=333.337.search-card.all.click
池化层相关知识点:[[006深度学习入门——卷积神经网络#池化层]]
核心代码
class module(nn.Module):
def __init__(self):
super().__init__()
self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)
def forward(self, input):
output = self.maxpool1(input)
return output
完整代码
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import MaxPool2d
# 输入图像的二维矩阵
input = torch.tensor([[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]], dtype=torch.float32)
input = torch.reshape(input,(-1, 1, 5, 5))
class module(nn.Module):
def __init__(self):
super().__init__()
self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)
def forward(self, input):
output = self.maxpool1(input)
return output
test = module()
output = test(input)
print(output)
池化层作用
缩小网络维度,加快运算速度